CN |CAS  
 
  Home | Links | Site map
 
Home About Us News Organization Research Faculty Publication Education&Trainning Contact
  Research
Location: Home > Research
 
 
Research
Target
Discovery
Development
Translation
 
Scientists Provide a Possible Approach for Personalized Cancer Therapy with Metabolic Inhibitors
Update time: 2019-06-24
Close
Text Size: A A A
Print

Deregulated metabolism is a hallmark of cancer. It is believed to present the new therapeutic opportunities and attracts increasing efforts in anticancer drug discovery. However, the metabolic vulnerabilities for most human cancers remain unclear.

In an article published in Nature Communications, a joint team from the Shanghai Institute of Materia Medica (SIMM), CAS and Xiamen University made progresses in the identification of the metabolic vulnerabilities of receptor tyrosine kinases (RTK) aberrant cancer, the well-defined molecular subtypes in clinical cancer treatment.

The finding provides the possibility of tailoring metabolic inhibitors using known oncogenic alterations for cancer therapy. So far, very limited benefits were obtained in the clinical modalities of metabolic targets, in which metabolic inhibitors were often delivered to broad cancer patients without indication of metabolic dependency.

With the advancement of metabolic inhibitors discovery, it is imperative to understand patient stratification strategy for the treatment.

To stratify the responsive tumors to metabolism inhibitors, HUANG Min, GENG Meiyu at the SMM and LIN Shu-Hai from Xiamen University took an approach to establish the linkage between metabolic dependency and the oncogenic alterations of receptor tyrosine kinases (RTK), the well-defined cancer genotypes occurred in a broad spectrum of cancer tissues types.

By integrating metabolomics and transcriptomics, they discover that oncogenic RTK activation causes distinct metabolic preference. Specifically, epidermal growth factor receptor (EGFR) activation branches glucose metabolism to the serine synthesis for nucleotide biosynthesis and redox homeostasis, whereas fibroblast growth factor receptor (FGFR) activation recycles lactate to fuel mitochondrial phosphorylation for energy generation. Genetic alterations of EGFR and FGFR stratify the responsive tumors to pharmacological inhibitors that shut down the serine synthesis and lactate fluxes, respectively.

These findings provide basis for stratifying EGFR and FGFR aberrant patients for metabolism-targeted therapies, suggesting the potential to precisely direct metabolic intervention to a broad patient population.

This work was supported by the China International Science and Technology Cooperation Program, National Natural Science Foundation of China and the Strategic Priority Research Program of the Chinese Academy of Sciences.

Linkage: https://www.nature.com/articles/s41467-019-10427-2

Metabolic vulnerabilities driven by FGFR and EGFR gene alterations in cancer (Image by JIN Nan)

Contact:

HUANG Min

Email: mhuang@simm.ac.cn

 

(Credit: HUANG Min; Editor: PAN Peihua)

 
weimoban
About Us News Research Faculty Education&Trainning Organization Contact
Brief Introduction
History
Address from the Director
Directors
Administration
Research
Events
Int'l cooperation
Target
Discovery
Development
Translation
Academician
PI
Graduate Students
Post Graduate Students