CN |CAS  
 
  Home | Links | Site map
 
Home About Us News Organization Research Faculty Publication Education&Trainning Contact
  Research
Location: Home > Research > Discovery
 
 
Research
 
Biomimetic Strategy Realizes Imaging-guided Treatment of Breast Cancer Metastasis
Update time: 2018-08-30
Close
Text Size: A A A
Print

Cancer is one of the leading causes of death in China and the world. A treatment that can kill cancer cells selectively is in urgent demand. Adopted cell therapy has emerged as an effective strategy for cancer therapy.

More recently, there is a significant focus on developing biomimetic nanomedicine for targeted cancer therapy. One major advantage of this approach is that the reliance of biological mechanism and tunable physiochemical properties can be integrated.

Prof. LI Yaping’s group from the Shanghai Institute of Materia Medica of Chinese Academy of Sciences has focused on biomimetic nanomedicine. Recently, they explored the biomimetic strategy in creating cytotoxic T lymphocyte-mimic nanovesicle (MPV), a traceable bioinspired nanoparticle for the treatment of metastatic breast cancer. The finding was published online in Advanced Materials.

In our body, specific cell eradication is common and dispensable to maintain homeostasis. For instance, immune cells as guardians of our body are able to recognize abnormal cells by checking the surface of cells they encountered, and then release toxins into the target cells to trigger their apoptosis. Unfortunately, the ability of the immune cells is suppressed in cancer patients.

The MPV contained a cell-membrane derived shell that sealing toxins (methylene blue and cisplatin) loaded nanogel up. Since the nanovesicles had “faces” similar to normal cells in the body, they could persist in the circulation and then leaked into the tumor.

Their accumulation in the tumor could be monitored in real-time, and the therapy could be turned on specifically in the tumor by laser in a way mimicking cytotoxic T lymphocyte (delivering toxins into target cells to trigger cell apoptosis) regardless of an immunosuppressive microenvironment.

The MPV, when used in combination with laser, induced partial regression of the primary tumors, and more importantly, inhibited 97% pulmonary metastasis.

The prove-of-concept work is limited by the fact that an external stimulus is required to switch on the treatment and all the experiments were performed in vitro or in animals.
Despite the limitation of the work, thefinding provides inspiration for the future design of biomimetic nanomedicine that can respond to chemical/physical/biological cues in the tumors.

The work was supported by the National Natural Science Foundation of China.

The article link: https://doi.org/10.1002/adma.201802378

Schematic illustration of the working mechanism of CTL-mimetic nanovesicles (MPV) (Image by Pengcheng Zhang).

Contact:
ZHANG Pengcheng
pzhang@simm.ac.cn

(Credit: ZHANG Pengcheng; Editor: PAN Peihua)

 

 

 
weimoban
About Us News Research Faculty Education&Trainning Organization Contact
Brief Introduction
History
Address from the Director
Directors
Administration
Research
Events
Int'l cooperation
Target
Discovery
Development
Translation
Academician
PI
Graduate Students
Post Graduate Students